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Abstract. The properties of soft magnetic exchange-springs in both bilayer and multilayer
samples are investigated, with particular emphasis on the discrete nature of the spring. It is shown
that, in a mean-field model, a very simple relationship exists between the bending field BB , the
exchange field BEX , and the number of monolayers N in the soft magnetic layer. For bilayers
BB/BEX = (π/2N)2, whereas for multilayers BB/BEX = (π/N)2. In addition, it is shown
that Jacobi elliptic functions, originally used by Goto et al for continuous bilayer springs, provide
a surprisingly robust description of discrete bilayer and symmetric multilayer exchange-springs.
Finally, the problem of soft exchange-spring penetration into neighbouring hard magnetic layers
is discussed. Calculations show that this is an important effect, which leads to a reduction in the
bending field BB .

1. Introduction

In recent years, the properties of layered magnets, at the atomic level, have attracted much
attention (Fullerton et al 1998, 1999, Coey and Skomski 1993, Skomski and Coey 1993).
The underlying reason for this interest stems from the work of Coey and Skomski, who
have argued, on theoretical grounds, that composite magnets with a giant energy product
(BH)MAX of 120 MG Oe might be feasible, if the exchange-spring mechanism in nano-
structured oriented magnets could be suppressed. This work has also been complemented
with magnetic measurements on ferromagnetically coupled hard and soft multilayer samples,
such as sputtered SmCo5 and Fe layers. For reviews of the present status of this research field,
and references contained therein, the reader is referred to Fullerton et al (1998, 1999).

From a theoretical point of view, a key paper, detailing the magnetic behaviour of a hard
magnetic substrate coated with a soft Fe layer, was first given by Goto et al (1965). These
authors showed that the angular dependence of a continuous 180◦ exchange-spring, in the soft
magnetic layer of a bilayer sample, could be expressed in terms of Jacobi elliptic functions. In
addition, they showed, both theoretically and experimentally, that the onset of the exchange-
spring was characterized by a critical ‘bending field BB’. Moreover, this field is proportional
to 1/w2, where w is the thickness of the soft magnetic layer. In this paper, we extend their
discussion to discrete bilayer and multilayer exchange-springs.

This paper is set out as follows. In the next section, a numerical method for calculating
the explicit form of exchange-springs is described, as a function of applied magnetic field.
In particular, computer calculations show that there is a simple relationship between the
bending field BB , the exchange field BEX and the number of monolayers N in the soft
magnetic layer BB/BEX ∝ 1/N2, for both bilayer and multilayer samples. In section 3,
a fresh look at the analytical result of Goto et al (1965) is presented and discussed, but
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Figure 1. Schematic drawings of (a) a (0–180◦) exchange-spring in a bilayer sample, (b) a
symmetric exchange-spring (0–φ–0) in a multilayer sample.

this time paying particular reference to the choice of boundary conditions. It is also shown
that, despite the discrete nature of the soft ferromagnetic layer, Jacobi elliptic functions can
still be used to advantage, even in the case of very short exchange-springs. In section 4,
an analytical derivation of the result BB/BEX = (π/2N)2 for a bilayer exchange-spring is
given in terms of a small sinusoidal angular displacement. Finally, in section 5, the problem
of exchange-spring penetration into neighbouring hard magnetic layers is examined, using
numerical methods.

2. Numerical solution for exchange-springs

Schematic drawings of exchange-springs in a soft magnetic layer can be seen in figures 1(a)
and (b). An exchange-spring (0–φ), where φ can be 180◦, is shown in figure 1(a). This spring
is appropriate to a bilayer sample. In figure 1(b), a symmetric exchange-spring (0–φ–0) can
be seen. Such springs occur in multilayer samples. In both diagrams, it is assumed that the
spins at the edges of the soft magnetic layer are pinned by the neighbouring hard magnetic
layer, or layers, respectively.
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Following Fullerton et al (1998), but with minor changes in notation, the total energy for
an exchange-spring takes the form:

E =
∑
n

ε(n) (1)

where (i)

ε(n) = +µFeBAPP cos θn − 1
2µFeBEX[cos(θn − θn−1) + cos(θn+1 − θn)] (2)

(ii) the symbols possess their usual meanings and (iii) BAPP is directed along the negative
z-axis, as depicted in figure 1. Note that in writing equation (2), only nearest-neighbour
interactions have been included and the anisotropy associated with the soft magnetic layer has
been neglected.

For stability, the energy of the entire domain E wall must be stable with respect to small
partial variations in θn:

∂E

∂θn
= 0. (3)

In practice, the angle θn only appears explicitly in the energies of the (n − 1), n and (n + 1)th
layers. So we can rewrite equation (3) in the form:

∂E

∂θn
= ∂E(θn)

∂θn
= 0 (4)

where

E(θn) = +µFeBAPP cos θn − µFeBEX[cos(θn − θn−1) + cos(θn+1 − θn)]. (5)

Note however that equation (4) only holds when the complete set of equilibrium angles {θn} is
known. Also care must be exercised with the spins at the beginning and end of the exchange-
spring, pinned by the hard magnetic layers.

The equilibrium set of angles {θn} can be found, iteratively, in the following way. First, a
trial set {θn}0 is chosen. This could be say a linear extrapolation from 0 to +π to the middle
of a symmetric exchange-spring, and +π to 0 to the end. Initially therefore, the condition for
stability (equation (4)) is almost certainly not met. Next, we define the initial gradient:

(E(θn)
′)0 =

(
∂E

∂θn

)
0

= −µFeBAPP sin θn + µFeBEX[sin(θn − θn−1) − sin(θn+1 − θn)]. (6)

Our criterion therefore, for choosing the set {θn}, is to minimize the gradients E(θn)
′ for all n.

This can be done in an iterative manner, which differs from the Monte Carlo method
described by Fullerton et al (1998). Let us imagine that our initial set {θn}0 is fairly close to
the equilibrium set, but that we can move even closer by setting{ θn−1 → θn−1 + ∂θn−1

θn → θn + ∂θn
θn+1 → θn+1 + ∂θn+1

}
. (7)

Consequently, on substituting equations (7) into equation (6), expanding, and gathering only
those terms which are linear in ∂θ we find

E(θn)
′→(E(θn)

′)0 − E(θn)∂θn − µFeBEX[cos(θn − θn−1)∂θn−1 + cos(θn+1 − θn)∂θn+1] = 0.

(8)

This equation can be re-expressed in the matrix form:

M∂θ = (E(θn)
′)0 (9)
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Figure 2. Computed shapes for a specific example of an 180◦ bilayer exchange-spring, for N = 10
monolayers, as a function of applied field.

where (i) (E(θn)
′)0 and ∂θ are column matrices, and (ii)M is anN×N matrix, whose elements

can be easily deduced from equation (8). In practice, in the case of symmetric exchange-springs
it is possible to exploit the symmetries inherent in the matrix M , to reduce the calculation of
the angles by a factor ∼2. Finally, on re-arranging equation (9) we find

∂θ = M−1(E(θn)
′)0. (10)

So the new set of trial angles is given by

θ → θ + ∂θ. (11)

In practice, convergence is very rapid. Usually five iterations are more than enough, given a
judiciously chosen initial set of angles.

Once the equilibrium set of angles {θn} has been determined, it is a straightforward matter
to calculate the energy of the entire exchange-spring and to compare it with the energy of the
simple ferromagnetic state (i.e. no exchange-spring). In practice, exchange-springs only form
when the gain in Zeeman energy outweighs the concomitant loss in magnetic exchange energy.
So the calculations presented in this paper are only valid for T = 0 K. Following Goto et al
(1965), we shall denote the critical field required to create an exchange-spring as the bending
field BB .

In figure 2, the computed shapes for a 180◦ bilayer exchange-spring, with N = 10
monolayers, can be seen, as a function of applied field. From an examination of these curves,
it is clear that for fields that just exceed the bending field BB , the maximum deviation φ away
from the ferromagnetic state θn = 0 is very small. However, as the field is increased, more
and more spins are pulled away from the anti-parallel alignment. We also note that while the
change dθn/dn for the last spin in the chain is small it is not zero, except in the case of a very
long exchange-spring where φ = 180◦ is reached long before the end of the chain. This point
is taken up again in the next section.

In figure 3, the computed curves can be seen for a symmetric exchange-spring, with a
nominal N = 19 spins. Given such curves, it is an easy matter to calculate the extra magnetic
moment generated by the exchange-springs. This is illustrated in figure 4, which shows the
reduced magnetization curves 〈cos θ〉 of the soft magnetic layer, as a function of both magnetic
field and number N . It will be observed that the bending field BB increases sharply as the
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Figure 3. Computed shapes for an N = 19 monolayer symmetric exchange-spring in a multilayer
sample, as a function of applied field.

Figure 4. Reduced magnetization curves 〈cos θ〉 of the soft magnetic layer in a symmetric
exchange-spring, as a function of magnetic field and number N .

number of spins N in the soft layer is reduced. From computer calculations for a symmetric
exchange-spring, we find that

BB

BEX

=
(
π

N

)2

(12)

to an accuracy of 1 in 104. The reason for writing π2 in equation (12), instead of a computed
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number, will become clear in section 4. Similarly, for a symmetric exchange-spring

BB

BEX

=
(

π

2N

)2

. (13)

Note that the bending field for an equivalent number of spins N is always lower in a bilayer
exchange-spring, as expected.

From an examination of both equations (12) and (13), it is clear that the bending field BB

is proportional to 1/w2 where w is the width of the soft magnetic layer. As mentioned earlier,
this result was obtained long ago by Goto et al (1965), for continuous bilayers. More recently,
it has been shown that the inverse square law also applies for a soft magnetic sphere of radiusR,
embedded in a hard magnetic matrix (Skomski and Coey 1999). However, equations (12) and
(13) represent the most transparent form of the relationship between the bending field BB and
exchange field BEX.

In section 4, an analytical derivation of equation (13) is presented and discussed. However,
before leaving this section, it should be acknowledged that in obtaining the numerical results
embodied in equations (12) and (13), there is a small problem about what to do with the end
spins of the exchange-spring. For large number of spins this does not constitute a problem.
But for small numbers of spins it does affect the exponent of N and the constant appearing in
equations (12) and (13). For example, consider the first spin in an exchange-spring, pinned by
a hard magnetic layer. The question is: ‘Does the pinned spin belong to the exchange-spring
or the hard layer?’. In practice, we have found that consistent numerical results, for differing
values of N , are obtained by ascribing an extra 1

2 for each spin pinned by a hard layer.
In the next section, the analytic form of the exchange-spring in a bilayer system given by

Goto et al (1965) is re-examined. These authors showed that the angular form of a continuous
bilayer exchange-spring could be expressed in terms of Jacobi elliptic functions. However,
their treatment only strictly holds true when the turn angle between neighbouring spins is very
small. Thus for short discrete domain walls, numerical methods would appear to be mandatory.
However, it will be shown that the analytical solution is surprisingly robust, even in the case
of very short discrete exchange-springs.

3. Analytical expressions for exchange-springs

The spin configuration in question, is illustrated schematically in figure 1(a). This figure has
been drawn to coincide with the magnetic spin configuration of Goto et al (1965). Note that
the top layer (n = 0) is pinned by the presence of the hard magnetic layer.

As mentioned earlier, the partial derivative of the total energyE with respect to θn, keeping
all other angles fixed, must be zero (∂E/∂θn = 0). For a large number of monolayers N , the
turn angle per layer will be very small. Consequently, it is permissible to expand θn±1:

θn±1 = θn ± dθn
dn

× 1 +
1

2

d2θn

dn2
× (1)2 . . . . (14)

To second order therefore, equation (4) takes the form

∂E

∂θn
= −µFEBEX

d2θn

dn2
− µFEBAPP sin θn = 0 (15)

or alternatively

d2θn

dn2
+ α2 sin θn = 0 (16)
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where (i) BAPP is directed along the negative z-axis, as shown in figure 1(a), and (ii)

α2 =
(
BAPP

BEX

)
. (17)

Note that if N is large and the spacing a between layers is small then

d2θz

dz2
+ β2 sin θz = 0 (18)

where (i) we have multiplied equation (17) by (1/a2), and (ii) β is given by

β2 = 1

a2

(
BAPP

BEX

)
. (19)

Equation (18) is essentially identical to that of Goto et al (1965), except that their constant β2

is given by

β2 = HXMs

2A
(20)

where (i) HX is the applied field, (ii) Ms is the saturation magnetization, and (iii) A is the
exchange constant.

The solution to the differential of equation (18) is easily shown to be

sin 1
2θz = k sn[βz] (21)

where sn is a Jacobi elliptic function of module k. For convenience we re-write equation (21)
in the form

sin 1
2θz = k sn

[
K

z

d

]
(22)

where the first quarter period K of the sn function is given by

K =
(
d

a

)√
BAPP

BEX

= N

√
BAPP

BEX

. (23)

Note that the first quarter period K and the module k are related via the elliptic integral:

K =
∫ π/2

0

dθ√
1 − k2 sin2 θ

. (24)

Thus either K or k is sufficient to define the Jacobi elliptic function sn in equation (22).
At this point in the discussion, it is necessary to differentiate between the 180◦ bilayer and

symmetric multilayer exchange-springs. For a bilayer exchange spring, we find, on substituting
equation (13) into equation (23),

K =
(
π

2

)√
BAPP

BB

. (25)

This result is in agreement with Goto et al (1965) (their equation (2.5)), but obtained via
a different route. Note that K is necessarily greater than (π/2), otherwise the stable spin
configuration reverts to that of the ferromagnetic state.

The solution defined by equations (22) and (25) possesses the boundary conditions

θ(z) = 0◦ at z = 0
dθ(z)

dz
= 0 at z = d (26)
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Table 1. Some calculated values of K for a bilayer spring of N = 10 spins. For an exchange field
BEX of 600 T, the calculated value of BB was found to be 13.396 T.

K θN K

BAPP (calc, from BB ) (last angle (rad)) (calc, from θN )

14 1.6059 2.545 078 1.6065
15 1.6638 2.193 847 1.6622
16 1.7168 1.962 434 1.7193
30 2.3508 0.817 358 2.3663
60 3.3245 0.282 0338 3.3602

Table 2. Some calculated values of K for a symmetric exchange-spring of N = 17 monolayers.
The value of BB was found to be 18.231 T, for BEX = 600 T.

K θN K

BAPP (calc, from BB ) (last angle (rad)) (calc, from θN )

18.5 1.5823 2.794 319 1.5827
20 1.6452 2.276 331 1.6476
30 2.0150 1.229 665 2.0298
60 2.8496 0.456 872 2.8961

(see Goto et al 1965, equation (2.3)). The first of these conditions simply states that the spins
are pinned at z = 0. However the second condition is dictated by the properties of the sn
Jacobi function at u = K , the first quarter period. Here the gradient of the continuous sn
function is necessarily zero, by virtue of the periodic nature of the sn function. In practice
however, discrete calculations reveal that while the gradient dθn/ dn for the last spin is not
necessarily zero, the use of Jacobi sn functions still provides a very good description of a bilayer
exchange-spring. This is illustrated in table 1, where we have listed some of the properties
of an exchange-spring with only N = 10 monolayers. It will be observed that the values of
K , calculated via two different routes, are in very good agreement with each other. This is
perhaps surprising, given the large turn angles between individual spins in large applied fields.

The situation for symmetric exchange-springs, with an odd number of spins, is slightly
different. Here the gradient dθn/ dn of the middle spin is necessarily equal to zero, and so the
periodicity of the Jacobi sn function is upheld, even in the case of very short exchange-springs.
Thus even better agreement between the predictions of the Jacobi elliptic function and that of
direct calculation might be anticipated. On substituting equation (12) into (23) we find

Ks = π

√
BAPP

BB

(27)

for a symmetric exchange-spring. But note that when z = d/2, the angle θM at the centre of
the spring is given by

sin
1

2
θM = ksn

[
1

2
Ks

]
= ksn

(
π

2

√
BAPP

BB

)
. (28)

This equation has precisely the same form as that for the bilayer problem, embodied in
equations (22) and (25), except, of course, that the bending fields BB differ in the two cases.
This suggests therefore that we should use equations (22) and (25), for both problems, but
with the proviso that (i) in the case of the bilayer problem z terminates at d, whereas in the
symmetric exchange-spring z terminates at 2 d, and (ii) the bending fields are different. Some
selected results for N set nominally equal to 17 monolayers can be seen in table 2.
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As with the bilayer results, it will be seen that the agreement between the calculated results
and the predictions of the elliptic Jacobi function is excellent, despite the discrete nature of the
exchange-spring.

4. The bending field transition

The numerical calculations presented in section 2 show that when BAPP just exceeds the
bending field BB , the angles made by the exchange-spring are very close to θ = 0. This
suggests, therefore, that it will be advantageous to study the stability of the ferromagnetic
state, with respect to a small collective instability.

To make further progress, it is necessary to specify a form for the collective angular
displacement. For the bilayer exchange-spring, we shall assume that the spins are subjected
to a sinusoidal standing wave (λ = 4d) of amplitude φ0 on the ferromagnetic structure, which
we write in the form:

θn = φ0 sin

(
πz

2d

)
= φ0 sin

(
πn

2N

)
. (29)

Here we have assumed (i) that the amplitude φ0 of the sinusoidal disturbance is very small,
(ii) the number of monolayers in the magnetically soft layer is N and (iii) the total width of
the soft magnetic layer is given by d = Na.

The following approximations are useful:

cos(θn − θn−1) ≈
[

1 − 1

2

{
φ0

(
π

2N

)
cos

(
πn

2N

)}2

· · ·
]

cos(θn+1 − θn) ≈
[

1 − 1

2

{
φ0

(
π

2N

)
cos

(
πn

2N

)}2

· · ·
]
. (30)

These can be used to show that the energy ε(n) of equation (2) can be re-written:

ε(n) = εF (n) − 1

2
µFeφ

2
0

[
BAPP sin2

(
πn

2N

)
−

(
π

2N

)2

BEX cos2

(
πn

2N

)]
(31)

which is to be compared with the ferromagnetic state:

εF (n) = µFeBAPP − µFeBEX. (32)

From a comparison of equations (31) and (32), it is clear that the exchange fan will form only
if the gain in Zeeman energy offsets the concomitant loss in magnetic exchange. This will
occur if

BAPP

∑
n

sin2

(
πn

2N

)
�

(
π

2N

)2

BEX

∑
n

cos2

(
πn

2N

)
(33)

which reduces to that of equation (13). Thus we have provided an explanation for the
(π/2N)2 behaviour, obtained earlier by direct numerical calculation. A similar argument
can be advanced for a symmetric exchange-spring.

In passing, we note that the formation of an exchange-spring can be viewed as an
elementary excitation of the soft magnetic layer that goes ‘soft’, as the applied field BAPP

approaches the critical bending field BB . However, this conclusion only strictly applies when
T = 0 K.

Finally, we give a rather belated justification for the choice of a sinusoidal distortion. We
have already shown that the solution for an exchange-spring is given by equation (22). Since
this equation holds for allBAPP in excess ofBB , this suggests that our earlier discussion should
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Figure 5. Computed shapes for an N = 31 monolayer symmetric exchange-spring, showing
penetration into the hard magnetic layers on either side, in a multilayer sample.

have been couched in terms of Jacobi elliptic functions. However, we shall now show that for
small deviations away from the ferromagnetic state, the Jacobi sn function reduces to a simple
sine function.

If the maximum deviation φ away from the ferromagnetic state is small, it follows from
equations (24) and (25) that k must be small. Thus on expanding equation (24) we find:

K ≈ π

2

(
1 +

(
k

2

)2

+ · · ·
)

(34)

to second order in k. Note that in the limit k → 0, K → π/2.
Next we observe that for elliptic functions:

u =
∫ φ

0

dθ√
1 − k2 sin2 θ

(35)

where the amplitude of u (am[u]) is φ and

sn[u] = sin[φ]. (36)

On expanding equation (35) therefore we find

u =
(
φ +

(
k

2

)2[
φ − 1

2
sin φ

])
(37)

to second order in k. Consequently, as k → 0, u → φ, and so

sn[u] → sin[u]. (38)

We are now in a position to prove our original assumption. Returning to the Jacobi elliptic
solution of equation (22), and making use of equations (34) and (38), we find that

θz = k sn

[
K

z

d

]
≈ k sin

[
π

2

(
z

d

)]
(39)

in the limit of small k. Consequently, on comparing equations (29) and (40), we see that the
initial angular deviation away from the ferromagnetic state is indeed sinusoidal, with amplitude
φ0 = k.
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Figure 6. Calculated bending fields BB , in reduced form η, as a function of the axial anisotropy
parameter D (see text). The calculations are for the same exchange-spring as described in figure 5.

5. Exchange penetration into the magnetically hard layers

In all of the work presented so far, it has been assumed that the spins in a soft magnetic layer
are pinned (θ = 0) at the hard magnetic boundaries. In practice however, some penetration
of the exchange spring into the magnetically hard layer is likely to occur. This situation is
easily catered for, by a modest adaptation of equations (1) to (11) to include the anisotropy
of the spins in the hard layer. Such calculations allow one to determine both the shape and
depth of penetration of exchange springs into the hard magnetic layers. However, as expected
equations (12) and (13) no longer hold, except in the case of very high magnetic anisotropy. An
example of a symmetric exchange spring containingN = 31 monolayers, sandwiched between
two hard magnetic layers (15 either side shown), can be seen in figure 5. These results have
been modelled on the MBE grown DyFe2/YFe2 films recently discussed by Sawicki et al
(2000). The magnetic anisotropy associated with the Dy3+ ions has been simulated with a
simple axial term:

EA = D cos(2θ) (40)

where D has been set equal to 10 K. This, perhaps rather low value of D has been chosen
because it allows considerable penetration of the exchange spring into the hard DyFe2 layers to
take place. This has the effect of reducing the bending field BB required to set up an exchange
spring, because N has effectively been increased. We find that BB is 3.7308 T, for an exchange
field BEX = 600 T. This figure is much lower than the value of 6.1621 T obtained using
equation (12). To examine this feature further we have plotted the reduced bending field:

η = BB(D)/BB(D → ∞) (41)

as a function of the axial anisotropy parameter D. It will be observed that very large values
of the parameter D are required, before the bending field BB approaches the value given by
equation (12). In practice therefore, the use of equations (12) and (13) will almost certainly
give rise to overestimates for the bending field BB .

Finally, we note that Skomski and Coey (1999) have also discussed the problem of
exchange-spring penetration into hard magnetic layers. In particular, they have given an
eigenvalue equation that can be used to determine the bending field (theirHN ), using numerical
methods.
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6. Conclusions

The properties of soft magnetic exchange-springs in both bilayer and multilayer samples,
consisting of alternatively hard and magnetically soft layers, have been investigated using
both numerical and analytical methods. It has been shown that despite the rather complicated
shape of the exchange-springs, a very simple relationship exists between the bending field
BB , the exchange field BEX, and the number of layers N in the soft magnetic layer. In
the mean field model, BB/BEX = (π/2N)2 for a bilayer spring, whereas for multilayer
exchange-springs BB/BEX = (π/N)2. In addition, it has been shown that the Jacobi elliptic
sn function, originally developed for continuous 180◦ bilayer exchange-springs, provides a
robust description of both discrete bilayer and symmetric exchange-springs, even when very
few monolayers N are involved. Finally, the problem of soft exchange spring penetration into
neighbouring hard magnetic layers has been investigated. Calculations show that this is an
important effect, which can reduce the bending field transition by some 10–50%, depending
on the hardness of the hard magnetic layers.
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